skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosenberg, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore the possibility of implementing random walks in the manifold of Hartree–Fock–Bogoliubov wave functions. The goal is to extend state-of-the-art quantum Monte Carlo approaches, in particular the constrained-path auxiliary-field quantum Monte Carlo technique, to systems where finite pairing order parameters or complex pairing mechanisms, e.g., Fulde–Ferrell–Larkin–Ovchinnikov pairing or triplet pairing, may be expected. Leveraging the flexibility to define a vacuum state tailored to the physical problem, we discuss a method to use imaginary-time evolution of Hartree–Fock–Bogoliubov states to compute ground state correlations, extending beyond situations spanned by current formalisms. Illustrative examples are provided. 
    more » « less
  2. Beginning from the conventional square-lattice nearest-neighbor antiferromagnetic Heisenberg model, we allow the 𝐽𝑥 and 𝐽𝑦 couplings to be anisotropic, with their values depending on the bond orientation. The emergence of anisotropic, bond-dependent couplings should be expected to occur naturally in most antiferromagnetic compounds which undergo structural transitions that reduce the point-group symmetry at lower temperature. Using the spin-wave approximation, we study the model in several parameter regimes by diagonalizing the reduced Hamiltonian exactly and computing the edge spectrum and Berry connection vector, which show clear evidence of localized topological charges. We discover phases that exhibit Weyl-type spin-wave dispersion, characterized by pairs of degenerate points and edge states, as well as phases supporting lines of degeneracy. We also identify a parameter regime in which there is an exotic state hosting gapless linear spin-wave dispersions with different longitudinal and transverse spin-wave velocities. 
    more » « less